Exercise 1.44

(a) Is the vector $(\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}})$ a unit vector? Justify your answer. (b) Can a unit vector have any components with magnitude greater than unity? Can it have any negative components? In each case justify your answer. (c) If $\overrightarrow{\boldsymbol{A}}=a(3.0 \hat{\boldsymbol{i}}+4.0 \hat{\boldsymbol{j}})$, where a is a constant, determine the value of a that makes $\overrightarrow{\boldsymbol{A}}$ a unit vector.

Solution

A vector $\mathbf{A}=\left\langle A_{x}, A_{y}, A_{z}\right\rangle$ has magnitude

$$
|\mathbf{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

so the components can be negative but not greater than 1 . The vector

$$
\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}=\langle 1,1,1\rangle
$$

has magnitude

$$
|\langle 1,1,1\rangle|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \neq 1,
$$

so it's not a unit vector. In order for

$$
a(3.0 \hat{\boldsymbol{i}}+4.0 \hat{\boldsymbol{j}})=\langle 3.0 a, 4.0 a, 0\rangle
$$

to be a unit vector,

$$
\begin{gathered}
\sqrt{(3.0 a)^{2}+(4.0 a)^{2}+0^{2}}=1 \\
\sqrt{25 a^{2}}=1 \\
25 a^{2}=1 \\
a= \pm \frac{1}{5} .
\end{gathered}
$$

Either the plus sign or the minus sign can be chosen.

